Arkansas Division of Environmental Quality Water Quality Management Plan Update Summary Sheet

Date: N	March 9, 2021				Prepared b	y: Shane Byrum
⊠ New	Permit		Renewal Permi	t	☐ Ame	ended Permit
Type of l	Discharge:	Dom	estic Wastewater			
Facility I	Name:	South	nwest Equity Investment	s, LLC - l	Paradise Su	ubdivision
Permit N	lo.:	AR0	053210			
Design F	low Rate (MGI)): 0.0	5			
Receivin	g Stream:	unna	med tributary, thence to	Mill Bayo	ou, thence	to the Arkansas River
HUC + F	Reach Code:	1111	$0207 + 013^1$,	7Q10:	0
Planning	Segment:	3C			County:	Pulaski
Monthly	Average Efflue	nt Liı	mits in mg/L:			
	May-October: November-Mar April:	ch:	15/20/5/3*/0.011** 20/20/10/2*/0.011** 20/20/5.6/2*/0.011**	(CBOD	5/TSS/NH3	3-N/DO/TRC) 3-N/DO/TRC) 3-N/DO/TRC)

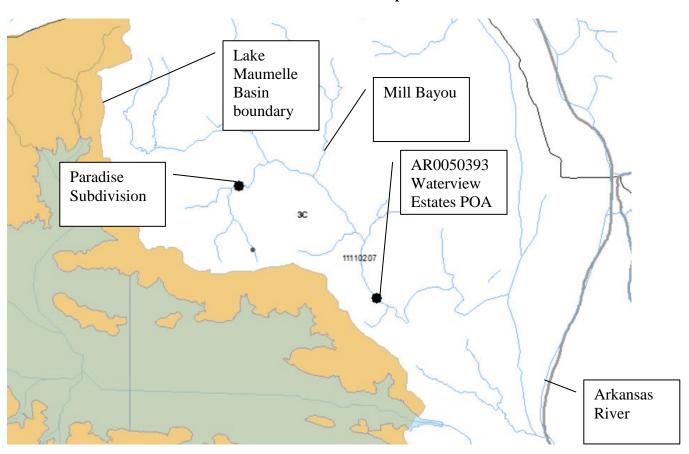
TMDL Limits: None

Justification (Sag = Minimum Modeled Value ≠ Difference in Value):

		DO	DO	Distance to DO	DO	DO	Distance to DO
Reach No.	Length (miles)	WQS _C (mg/L)	Sag _C (mg/L)	Sag _C (miles)	WQS _P (mg/L)	Sag _P (mg/L)	Sag _P (miles)
1	0.5	2.0	2.4	0.04	5.0	6.6	0.0

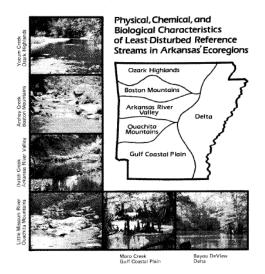
Values in above table are from a modeling analysis dated 3/9/2021.

Outfall Location (Lat/Long): 34° 54' 7.5" N; 92° 31' 24.8" W

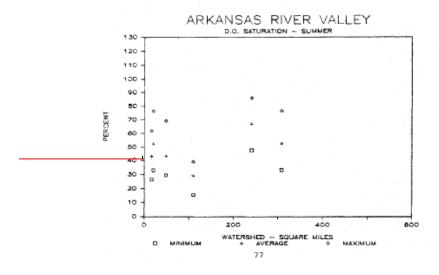

Remarks: This is a new wastewater treatment facility for a subdivision. The 208 Plan is being updated to

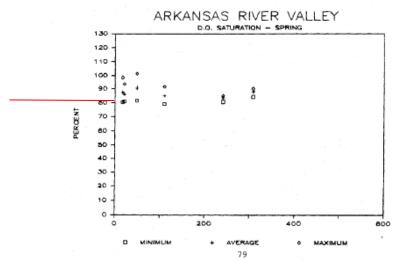
add this new facility and the limits shown above.

^{*} DO is an Instantaneous Minimum **TRC is an Instantaneous Maximum


¹ This is closest downstream 3-digit reach code which is assigned to the Arkansas River.

Stream Location Map


,			Ammonia Calculations			
POTW?	No	(Yes or No)			COLOR KEY	
Facility Name	Paradise Subdivision					User Inputs
Major or Minor	Minor					Calculated values
Permit Number	AR0053210					
Receiving Stream	Tributary of Mill Bayou		Ecoregion or River name	Arkansas River Va	ley	
7Q10, cfs	0	USGS Map	Watershed area (mi ²)	1.38		
0.25/0.67 multiplier	0.67		Regulation No. 2 Chronic	Toxicity Critieria (In	stream Concentration	on)
Qb, cfs	0.00			AML, mg/l	DML, mg/l	
Qe, MGD	0.05	Design flow	April	5.6	5.6	
Qe, cfs	0.08		May - October	5.6	5.6	
Cb, mg/l	0.1	Model input upstream	November - March	16.7	16.7	
Allowable Effluent C	onc., mg/l					
(Qe * Ce) + (Qb* Cl	b) = (Qe + Qb) * IWC			Allowable Effluent	Conc. (Ce), mg/l	
Qe	Effluent Flow			Ce = (IWC (Qe + 0	Qb) - Cb X Qb) / Qe	
Ce	Allowable Effluent Concen	tration			Monthly Avg.,mg/l	Daily Max, mg/l
Qb	% of Low Flow of Receiving	ng Stream		April	5.60	5.60
Cb	Background Concentration	n		May - October	5.60	5.60
IWC	Instream Waste Concentre	ation Chronic Toxic	city Criteria	November - March	16.70	16.70
Chronic Toxicity C	riteria vs. D.O. Model Lim	its				
	Monthly Average,	mg/l	Permit Limits	Daily Max	imum, mg/l	Permit Limits
Month	Toxicity limit	D.O. limit		Toxicity limit	D.O. limit	
April	5.60	10	5.60	5.60	15	5.60
May - October	no fishery	5	5.00	no fishery	7.5	7.50
November - March	16.70	10	10.00	16.70	15	15.00


			Ammonia Toxio	ity Criteria
Minor Permits				
Fish Early Life Stages Absent - P	rimary Seasor	n (Novembe	er - March), mg/	L L
Ecoregion	Temperature	pH	4-day average	30-day average
Arkansas River	14	7.6	10.3	10.3
Arkansas River Valley	14	6.7	16.7	16.7
Boston Mountains	14	6.9	15.8	15.8
Delta	14	7.1	14.7	14.7
Gulf Coastal Plains	14	6.6	17	1
Ouachita Mountains	14	7.1	14.7	14.
Ouachita River (L. Mo. to Mouth)	14	6.7	16.7	16.7
Ozark Highlands	14	7.6	10.3	10.3
Red River	14	7.5	11.3	11.3
White River (Dam #10 Mouth)	14	7.7	9.3	9.3
Fish Early Life Stages Present - (Critical Seasor	n (April - Od	ctober), mg/L	
Ecoregion	Temperature	pH	4-day average	30-day average
Arkansas River	32	7.6	3.2	3.2
Arkansas River Valley	31	6.7	5.6	5.0
Boston Mountains	31	6.9	5.3	5.3
Delta	30	7.1	5.2	5.2
Gulf Coastal Plains	30	6.6	6.1	6.1
Ouachita Mountains	30	7.1	5.2	5.:
Ouachita River (L. Mo. to Mouth)	32	6.7	5.2	5.2
Ozark Highlands	29	7.6	3.9	3.9
Red River	32	7.5	3.5	3.
White River (Dam #10 Mouth)	32	7.7	2.9	2.9

Volume II: Data Analysis 1987

State of Arkansas Department of Pollution Control and Ecology

Sediment Oxygen Demand (SOD) for Various Temperatures and Ecoregion 5

			Rocky St	ubstrate4			Applicable Ecoregions ⁶
	TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₂₉	SOD ₃₀	SOD ₃₁	Ozark Highlands
	15 ²	0.3	0.34	0.51	0.54	0.57	Boston Mountains
	20 ²	0.5	0.56	0.84	0.90	0.95	Ouachita Mountains
	30 ²	1.0	1.12	1.69	1.79	1.90	
	45³	1.4	1.57	2.37	2.51	2.66	
	90 ³	1.8	2.02	3.04	3.22	3.42	
			Mixed S	ubstrate			
	TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₂₉	SOD ₃₀	SOD ₃₁	Arkansas River Valley
	15 ²	0.4	0.45	0.68	0.72	0.76	Gulf Coastal Plain
	20 ²	0.7	0.79	1.18	1.25	1.33	
	30 ²	1.3	1.46	2.20	2.33	2.47	
	45³	1.6	1.80	2.70	2.87	3.04	
	90 ³	1.9	2.13	3.21	3.40	3.61	
			Sandy Su	ıbstrate ⁴			
	TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₃₀	SOD ₃₁	SOD ₃₂	Arkansas River Valley
	15 ²	0.5	0.56	0.90	0.95	1.01	Gulf Coastal Plain
<	20 ²	0.8	0.90	1.43	1.52>	1.61	Delta
	30 ²	1.5	1.69	2.69	2.85	3.0	
	45³	1.8	2.02	3.22	3.42	3.62	
	90³	2.0	2.25	3.58	3.80	4.02	

- Projected TSS instream after mixing.
- ² TSS values are from MOA with EPA found in the CPP. SOD values for rocky substrate are the lower end of range given in the MOA. SOD values for sandy substrate are the upper end of range given in the MOA.
- These TSS concentrations are outside of the range given in the MOA, so the corresponding SOD values are estimated.
- SOD values given in this table are the lower and upper ends of the recommended range. SOD values between the upper and lower values are acceptable based on nature of substrate.
- Deviations from these rates may take place in situations of high instream dilution, which significantly reduces the impact of the benthal (sediment) deposits on oxygen consumption. In these situations, justification on a case by case basis will be provided in the documentation submitted to EPA.
- ⁶ Applicable ecoregions are based on the general characteristics of waterbodies within each ecoregion (Rocky, Gravel, or Mixed). A different substrate type may be used based on site specific observations of the particular stream in question.

Model Input Data

W.S. Drainage Area (mi²): 1.38

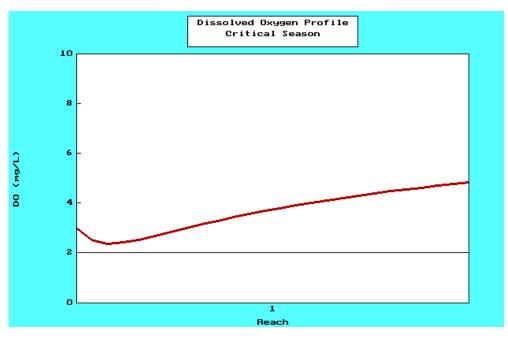
Ecoregion: Arkansas River Valley

 $Q_{DESIGN}:\ 0.05\ MGD$

7Q10: 0 cfs (StreamStats)

Input Model Coefficients

		Reach 1			
Coefficient – at 20° C	Input value		Justification	on	
BOD _{ult.} /BOD ₅	2.3		EPA Guid	ance	
$K_d(1/day)$	0.4		MOA, san	dy substrate	
K_n (1/day)	0.4		MOA, san	dy substrate	
$SOD (g/m^2/day)$	0.8		MOA, san	MOA, sandy substrate	
K_a (1/day)	8.5	(critical season)	O'Conner Dobbins equation		
	8.1	(primary season)	O'Conner Dobbins equation		
	Ap	plicable Water Qua	ality Standa	rds	
		Critical Season (N	May-Oct.)	Primary Season (NovApr.)	
		Reach 1		Reach 1	
D.O. Standard (mg/L)		2.0		5.0	
Temp. Standard (°C)		31		22	


Critical Season Stream Hydraulics

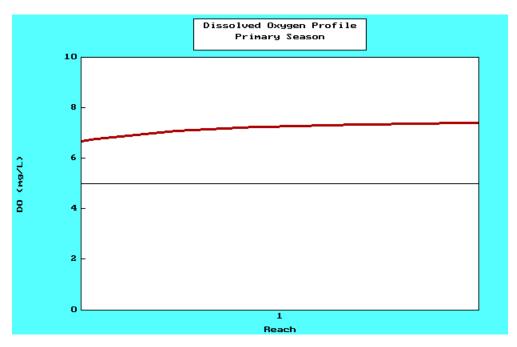
Q mgd	V	D	W	Ka (O'Conner Dobbins)	Velocity Coefficient	Depth Coefficient	Width Coefficient	Product of Coefficients
								(should equal 1)
0.005	0.005	0.175	9.635	11.980	0.085	0.751	I 15.665	1.000
0.01	0.007	0.215	10.327	10.797				
0.015	0.009	0.243	10.754	10.160	Velocity Exponent	Depth Exponent	Width Exponent	Sum of Exponents
0.02	0.011	0.265	11.068	9.730				(should equal 1)
0.025	0.012	0.283	11.318	9.410	0.6	0.3	0.1	1.0
0.03	0.013	0.299	11.526	9.156				
0.035	0.015	0.313	11.705	8.947				
0.04	0.016	0.326	11.862	8.770				
0.045	0.017	0.338	12.003	8.616	This worksheet is the hydraulics for stream flows up to 0.2 MGD.			MGD.
0.05	0.018	0.349	12.130	8.481				
0.055	0.019	0.359	12.246	8.361	The Velocity, Depth,	and Width values ir	n chart to left are fro	om the following
0.06	0.020	0.368	12.353	8.252	emperical equations	which were develo	ped based on the e	mperical relationships
0.065	0.021	0.377	12.452	8.154	presented on page 2	-33 of EPA Septemb	oer 1983 Technical G	iuidance Manual for
0.07	0.022	0.386	12.545	8.064	Performing Waste Lo	oad Allocations, Boo	ok II (Streams and Ri	vers).
0.075	0.023	0.394	12.632	7.981				
0.08	0.024	0.401	12.714	7.904	Velocity = 0.085 Q ^{0.6}			
0.085	0.025	0.409	12.791	7.832				
0.09	0.026	0.416	12.864	7.765	Depth = 0.751 Q ^{0.3}			
0.095	0.027	0.423	12.934	7.702				
0.1	0.028	0.429	13.001	7.643	Width = 15.665 Q 0.1			

Primary Season Stream Hydraulics

Quick Calculator								
0.92 Headwater in CFS		0.072323	0.5	0.567722	0.4	24.355	0.1	Accum
			FPS		Feet		Feet	MGD
0.05 Discharger 1 in MGD	Reach	1 Velocity	0.072	Depth	0.567	Width	24.349	0.645

Critical Season Model (53210_C.smp) 15/20/5/3 simulation (CBOD5/TSS/NH3/DO)

Cri	tical Season	TABULAR MODEL		
	River Mile	DO (mg/L)	BOD (mg/L)	NH3 (mg/L)
1	0.50	3.00	34.50	5.00
2	0.48	2.50	32.98	4.69
3	0.46	2.37	31.53	4.41
4	0.44	2.41	30.14	4.13
5	0.42	2.52	28.82	3.88
6	0.40	2.67	27.55	3.64
7	0.38	2.83	26.33	3.42
8	0.36	2.98	25.18	3.21
9	0.34	3.13	24.07	3.01
10	0.32	3.28	23.01	2.83
11	0.30	3.42	22.00	2.65
12	0.28	3.55	21.03	2.49
13	0.26	3.68	20.10	2.34
14	0.24	3.79	19.22	2.19
15	0.22	3.91	18.37	2.06
16	0.20	4.01	17.56	1.93
17	0.18	4.11	16.79	1.82
18	0.16	4.21	16.05	1.70
19	0.14	4.30	15.34	1.60
20	0.12	4.38	14.67	1.50
21	0.10	4.47	14.02	1.41
22	0.08	4.54	13.41	1.32
23	0.06	4.62	12.82	1.24
24	0.04	4.68	12.25	1.17
25	0.02	4.75	11.71	1.09
26	-0.00	4.81	11.20	1.03


Critical Season Ru	n information screen	
Name of receiving stream		trib of Mill Bayou
Number of discharges	(max = 10)	1
Number of reaches	(max = 10)	1
Reaeration type	(O, T, M)	O'Connor-Dobbins
Run title for screen displ	ay	Critical Season
Graphics printer type	(HP, FX, LQ, None)	None
Printed graph resolution	(Low, Med, High)	None

Critical Season	Upstream Ri∨er Pa	ırameters	Comments
Flow	(cfs)	0.00	
Temperature	(°C)	31.00	
Dissolved Oxygen	(mg/1)	3.00	40%sat ERstudy
5-Day BOD	(mg/1)	1.00	
Ult. CBOD / 5-Day BO	D	2.30	
рН	(su)	7.00	
Ammonia	(mg/1)	0.10	
Alkalinity	(mg/1)	-0.00	
Upstream river mile		0.50	

Critical Season	Parameters for I	ischarge 1	Comments
Flow	(MGD)	0.08	
Temperature	(°C)	31.00	
Dissolved Oxygen	(mg/1)	3.00	
5-Day BOD	(mg/1)	15.00	
Ult. CBOD / 5-Day BO	D	2.30	
pН	(su)	7.00	
Ammonia	(mg/1)	5.00	
Alkalinity	(mg/1)	-0.00	
Beginning of Reach No	umber	1	
Name of Discharger		Saddle Ranch	

Critical Season Par	Parameters for Reach 1		Comments
Length	(mile)	0.50	
Velocity	(fps)	0.02	
Slope	(ft/mile)	-0.00	
Average Depth	(ft)	0.35	
Temperature	(°C)	31.00	Calculated
BOD Removal Rate	(1/day)	0.40	
NH3 Decay Rate	(1/day)	0.40	
Sediment Oxygen Demand	(g/m²/day)	1.52	k20=0.8(tss=20)
Photosynthesis/respiration	(mg/L/day)	-0.00	

Primary Season Model (53210_P.smp) 20/20/10/2 simulation (CBOD5/TSS/NH3/DO)

Pri	mary Season	TABULAR MODEL		
	River Mile	DO (mg/L)	BOD (mg/L)	NH3 (mg/L)
1	0.50	6.65	5.69	0.87
2	0.48	6.75	5.64	0.86
3	0.46	6.83	5.60	0.85
4	0.44	6.90	5.56	0.85
5	0.42	6.96	5.51	0.84
6	0.40	7.01	5.47	0.83
7	0.38	7.06	5.43	0.82
8	0.36	7.10	5.39	0.82
9	0.34	7.14	5.35	0.81
10	0.32	7.17	5.31	0.80
11	0.30	7.20	5.27	0.80
12	0.28	7.22	5.23	0.79
13	0.26	7.24	5.19	0.78
14	0.24	7.26	5.15	0.78
15	0.22	7.28	5.11	0.77
16	0.20	7.29	5.07	0.77
17	0.18	7.31	5.03	0.76
18	0.16	7.32	4.99	0.75
19	0.14	7.33	4.95	0.75
20	0.12	7.34	4.91	0.74
21	0.10	7.35	4.88	0.73
22	0.08	7.36	4.84	0.73
23	0.06	7.37	4.80	0.72
24	0.04	7.37	4.77	0.72
25	0.02	7.38	4.73	0.71
26	-0.00	7.39	4.69	0.70

Primary Season	Run information screen	
Name of receiving stream		trib of Mill Bayou
Number of discharge:	s (max = 10)	1
Number of reaches	(max = 10)	1
Reaeration type	(O, T, M)	O'Connor-Dobbins
Run title for screen display		Primary Season
Graphics printer ty	pe (HP, FX, LQ, None)	None
Printed graph resol	ution (Low, Med, High)	None

Primary Season	Upstream River Parameters		Comments
Flow	(cfs)	0.92	seasonalfishery
Temperature	(°C)	22.00	
Dissolved Oxygen	(mg/1)	6.96	80%sat ERstudy
5-Day BOD	(mg/1)	1.00	
Ult. CBOD / 5-Day BOI		2.30	
рН	(su)	7.00	
Ammonia	(mg/1)	0.10	
Alkalinity	(mg/1)	-0.00	
Upstream river mile		0.50	

Primary Season	Parameters for Discharge 1		Comments
Flow	(MGD)	0.05	
Temperature	(°C)	31.00	
Dissolved Oxygen	(mg/1)	3.00	
5-Day BOD	(mg/1)	20.00	
Ult. CBOD / 5-Day BO	D	2.30	
pН	(su)	7.00	
Ammonia	(mg/1)	10.00	
Alkalinity	(mg/1)	-0.00	
Beginning of Reach N	umber	1	
Name of Discharger		Saddle Ranch	

Primary Season	Parameters for Reach 1		Comments
Length	(mile)	0.50	
Velocity	(fps)	0.07	
Slope	(ft/mile)	-0.00	
Average Depth	(ft)	0.57	
Temperature	(°C)	22.70	Calculated
BOD Removal Rate	(1/day)	0.40	
NH3 Decay Rate	(1/day)	0.40	
Sediment Oxygen Demand	(g/m²/day)	0.90	k20=0.8(tss=20)
Photosynthesis/respirat	ion (mg/L/day)	-0.00	